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Rearrangement of a silyl group from C to O has been successfully
applied to sequential carbon-carbon bond formation.1 We have
also disclosed a domino reaction of silyldibromomethyllithium1a
with aldehydes and electrophiles (Scheme 1).2 The key of this
process is solvent-controlled 1,3-Brook rearrangement of silicon
from carbon to oxygen (2 to 3) prior to Peterson elimination of
â-oxidosilanes2. This concept has been recently expanded to
multicomponent linchpin coupling reactions with silylated 1,3-
dithianes.3

In contrast, there have been few reports on rearrangement from
C to N (aza-Brook rearrangement).4 With the hope to find the aza-
Brook rearrangement, we investigated the reaction of1a with
nitriles. Here we present 1,3-rearrangement of a silyl group from
carbon to negatively charged sp2-nitrogen. In addition, a synthesis
of R-keto acylsilanes, where 2-bromo-2H-azirine participates as a
key intermediate, is reported.

tert-Butyldimethylsilyldibromomethyllithium (1a) was easily
prepared by deprotonation of dibromomethylsilane with lithium
diisopropylamide (LDA) in THF at-78 °C. An addition of
benzonitrile and subsequent acidic workup did not furnish the
expected rearrangement product7abut yielded deep crimson 1-silyl-
2-phenylethanedione8a as a stable compound (Scheme 2). The
result was intriguing enough to lead us to develop a new synthetic
route of R-keto acylsilanes. Although functionalized acylsilanes
have been extensively explored in organic synthesis,5 only two
reports of R-keto acylsilane preparation have appeared in the
literature, both of which entail a multistep operation.6 It then proved
to be necessary to employ 1.5 equiv of LDA and stir more than 5
min after quenching with 1 M HCl to improve the yield. After
optimization,R-keto acylsilane8a was obtained in 74% yield. The
reaction proceeded with aromatic nitriles bearing an electron-
donating or -withdrawing group, giving8b or 8c in 76 or 54%
yield respectively (Table 1). Unfortunately, alkyl nitriles provided
none of the desired products.R-Keto acylsilane8awas also obtained
in 47% yield from silyldiiodomethyllithium1b. The lower yield
was ascribed to the instability of1b. Interestingly, the use of
silyldichloromethyllithium1c furnishedR,R-dichloro-4-methoxy-
acetophenone (7b), which can be regarded as the rearrangement
product of the silyl group (vide infra). The triisopropylsilyl analogue
1d afforded the correspondingR-keto acylsilane8g in 63% yield
(entry 9), whereas dimethylphenylsilyl and trimethylsilyl did not
furnish the correspondingR-keto acylsilanes.

We presumed the reaction mechanism involved an intermediacy
of 2-bromo-2H-azirine for the unexpected formation ofR-keto
acylsilane (Scheme 3).7 Nucleophilic attack of1a to nitrile produces
an initial adduct5, which intramolecularly cyclizes to 2-bromo-
2H-azirine 9. Hydrolysis of 9 furnishes R-keto acylsilanes8.
Chemical evidence for the presence of 2H-azirine was provided

by the action of LiAlH4 or allylmagnesium chloride giving the
corresponding aziridine10. Furthermore, 2H-azirine 11 was
obtained as a major product in the reaction with phenyl- or
butylmagnesium bromide. An X-ray diffraction unambiguously
elucidated that direct halide displacement and not nucleophlic
addition to the C-N double bond provides11a (Figure 1).8 Azirine
11still has a reactive imine bond, and sequential additions of butyl
and allyl Grignard reagents to9 provided10c.

As briefly mentioned above, aza-1,3-Brook rearrangement can
explain the formation ofR,R-dichloro ketone7b from 1c. If this is
the case, an addition of electrophiles to the reaction mixture would
capture the resulting carbanionic species6. In fact, treatment with
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a R,R-Dichloro ketone7b was obtained in 77% yield.
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iodomethane providedC-methylated product13a, along with
N-methyl imine12a(Scheme 4).9 Benzaldehyde, which is reactive
with 6 but not with5, afforded13b in excellent yield. Importantly,
a single isomer ofN-silyl imine 13 was exclusively obtained in
each case. The stereochemistry of the C-N double bond was
assigned asZ-configuration on the basis of NOE experiments.

Finally, we conducted this novel preparation ofR-keto acylsilanes
in a one-pot operation (Scheme 5). To a mixture of dibromomethane

andtert-butyldimethylsilyl chloride in THF was added LDA at-78
°C. To the resulting mixture was added 4-methoxybenzonitrile.
Quenching with 1 M HCl affordedR-keto acylsilane8b in 55%
overall yield.

In conclusion, we have achieved a novel route toR-keto
acylsilanes from aryl nitriles with silyldibromomethyllithium. This
reaction involves 2-bromo-2H-azirine as a key intermediate, al-
lowing the synthesis of aziridines or azirines with nucleophiles.
Furthermore, we have observed novel silyl 1,3-rearrangement from
carbon to negatively charged nitrogen in the reaction with silyldi-
chloromethyllithium, which enables sequential carbon-carbon bond
formation.
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Figure 1. ORTEP drawing of azirine11a.

Scheme 3

Scheme 4

a After acidic hydrolysis of imines to ketones.

Scheme 5
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